We are making measurements of methane concentration, stable isotopes, and radiocarbon isotopes in natural waters to determine sources, sinks, and fluxes of this greenhouse gas around the planet.

One more specific investigation involves stable isotope theory.  Stable isotope measurements of methane are powerful tools with the potential to determine both formation and destruction properties of methane.  However, because of some peculiarities with the biogeochemical kinetics of the isotopes, the quantitative treatment of isotopic data becomes much more of a challenge.  Here we are reevaluating the fundamental theory and repeating some of the early experiments with a new experimental design enabling high temporal resolution isotopic analyses.  The goal of these investigations is to provide a solid fundamental understanding of methane isotope kinetics which can be used for the quantitative treatment of stable isotope data.


  • Leonte, M.,  B. Wang,  S. A. Socolofsky,  S. Mau,  J. A. Breier, and  J. D. Kessler (2018). Using Carbon Isotope Fractionation to Constrain the Extent of Methane Dissolution Into the Water Column Surrounding a Natural Hydrocarbon Gas Seep in the Northern Gulf of Mexico. Geochemistry, Geophysics, Geosystems. 19, 4459–4475. https://doi.org/10.1029/2018GC007705
  • Garcia-Tigreros, F. and J. D. Kessler (2018). Limited acute influence of aerobic methane oxidation on ocean carbon dioxide and pH in Hudson canyon, northern U.S. Atlantic margin. Journal of Geophysical Research: Biogeosciences, 123(7), 2135-2144. https://doi.org/10.1029/2018JG004384
  • Leonte, M., J. D. Kessler, M. Y. Kellermann, E. C. Arrington, D. L. Valentine, and S. P. Sylva (2017). Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin. Geochimica et Cosmochimica Acta, 204, 375-387. https://doi.org/10.1016/j.gca.2017.01.009
  • Weinstein, A., L. Navarrete, C. Ruppel, T. C. Weber, M. Leonte, M. Y. Kellermann, E. C. Arrington, D. L. Valentine, M. I. Scranton, and J. D. Kessler (2016). Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability. Geochem. Geophys. Geosyst., 17(10), 3882-3892. https://doi.org/10.1002/2016GC006421
  • Du, M., S. Yvon-Lewis, F. Garcia-Tigreros, D.L. Valentine, S. Mendes, and J.D. Kessler (2014). High resolution measurements of methane and carbon dioxide concentrations and air-sea fluxes reveal the influence of methane seepage on greenhouse gas dynamics in a massive natural seep field near Coal Oil Point, California. Environmental Science & Technology, 48(17), 10165-10173. https://doi.org/10.1021/es5017813
  • Pasche, N., Schmid, M., Vazquez, F., Schubert, C. J., Wüest, A., Kessler, J.D., Pack, M.A., Reeburgh, W.S., and Burgmann, H. (2011). Methane sources and sinks in Lake Kivu. J Geophys Res-Biogeo, 116, G03006. https://doi.org/10.1029/2011JG001690
  • Kessler, J.D., W.S. Reeburgh, D.L. Valentine, F.S. Kinnaman, E.T. Peltzer, P.G. Brewer, J. Southon, and S.C. Tyler (2008). A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters. Journal of Geophysical Research, 113(C12), C12021. https://doi.org/10.1029/2008JC004822
  • Kessler, J.D., W.S. Reeburgh, and S.C. Tyler (2006). Controls on Methane Concentration and Stable Isotope (δ2H-CH4 and δ13C-CH4) Distributions in the water columns of the Black Sea and Cariaco Basin. Global Biogeochemical Cycles, 20(4), GB4004. https://doi.org/10.1029/2005GB002571

“Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."